12 United States Patent

Baronne et al.

US012282800B2

US 12,282,800 B2
Apr. 22, 2025

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(51)

(52)

(58)

THREAD REPLAY TO PRESERVE STATE IN
A BARREL PROCESSOR

Applicant: Micron Technology, Inc., Boise, 1D

(US)

Inventors: Chris Baronne, Allen, TX (US); Dean
E. Walker, Allen, TX (US); John
Amelio, Allen, TX (US)

Assignee: Micron Technology, Inc., Boise, 1D
(US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 928 days.

Appl. No.: 17/075,013

Filed: Oct. 20, 2020

Prior Publication Data

US 2022/0121485 Al Apr. 21, 2022

Int. CI.

GO6F 9/48 (2006.01)

GO6F 1/10 (2006.01)

GO6F 9/46 (2006.01)

GO6F 9/50 (2006.01)

GO6F 12/0875 (2016.01)

U.S. CL

CPC ............. GO6F 9/4881 (2013.01); GO6F 1/10

(2013.01); GOGF 9/46 (2013.01); GO6F 9/466
(2013.01); GOGF 9/48 (2013.01); GO6F
9/4843 (2013.01); GOGF 9/485 (2013.01);
GO6F 9/50 (2013.01); GO6F 12/0875
(2013.01); GOGF 2212/452 (2013.01)

Field of Classification Search
CPC ... GO6F 9/46; GO6F 9/466; GO6F 9/48; GO6F
9/4806; GO6F 9/4843; GO6F 9/485:; GO6F
9/4881; GO6F 9/50; GO6F 9/505

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

9,317,297 B2* 4/2016 Gottschlich ........... GO6F 9/3005
2006/0123423 Al1* 6/2006 Brenner ................ GOG6F 9/5083
718/105

2011/0119528 Al* 5/2011 Karlsson ............. GO6F 11/1405
714/25

2011/0302585 Al1* 12/2011 Dice .....evevvnnnn... GO6F 9/5033
718/102

2013/0160023 Al1* 6/2013 Suzuki ................. GOGF 9/5027
718/104

2014/0181833 Al* 6/2014 Bud ...................... GO6F 9/5077
718/105

(Continued)

Primary Examiner — Charles M Swilt

(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

Devices and technmiques for thread replay to preserve state in
a barrel processor are described herein. An apparatus
includes a barrel processor, which includes a temporary
memory; and a thread scheduling circuitry; wherein the
barrel processor 1s configured to perform operations through
use of the thread scheduling circuitry, the operations 1nclud-
ing those to: schedule a current thread to place nto a
pipeline for the barrel processor on a clock cycle, the barrel
processor to schedule threads on each clock cycle; store the
current thread in the temporary memory; detect that no
thread 1s available on a clock cycle subsequent to the cycle
that the current thread 1s scheduled; and in response to
detecting that no thread 1s available on the subsequent clock
cycle, repeat scheduling the current thread based on the
contents of the temporary memory.
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THREAD REPLAY TO PRESERVE STATE IN
A BARREL PROCESSOR

BACKGROUND

Chiplets are an emerging technique for integrating various
processing functionalities. Generally, a chiplet system 1s
made up of discrete modules (each a “chiplet”) that are
integrated on an interposer, and 1n many examples intercon-
nected as desired through one or more established networks,
to provide a system with the desired functionality. The
interposer and included chiplets may be packaged together
to facilitate interconnection with other components of a
larger system. Each chiplet may include one or more indi-
vidual integrated circuits (ICs), or “chips”, potentially in
combination with discrete circuit components, and com-
monly coupled to a respective substrate to facilitate attach-
ment to the mterposer. Most or all chiplets 1n a system may
be 1individually configured for communication through the
one or more established networks.

The configuration of chiplets as individual modules of a
system 1s distinct from such a system being implemented on
single chips that contain distinct device blocks (e.g., intel-
lectual property (IP) blocks) on one substrate (e.g., single
die), such as a system-on-a-chip (SoC), or multiple discrete
packaged devices integrated on a printed circuit board
(PCB). In general, chiplets provide better performance (e.g.,
lower power consumption, reduced latency, etc.) than dis-
crete packaged devices, and chiplets provide greater pro-
duction benefits than single die chips. These production
benefits can include higher yields or reduced development
costs and time.

Chiplet systems may include, for example, one or more
application (or processor) chiplets and one or more support
chuplets. Here, the distinction between application and sup-
port chiplets 1s simply a reference to the likely design
scenarios for the chiplet system. Thus, for example, a
synthetic vision chiplet system can include, by way of
example only, an application chiplet to produce the synthetic
vision output along with support chiplets, such as a memory
controller chiplet, a sensor interface chiplet, or a communi-
cation chiplet. In a typical use case, the synthetic vision
designer can design the application chiplet and source the
support chiplets from other parties. Thus, the design expen-
diture (e.g., 1n terms of time or complexity) 1s reduced
because by avoiding the design and production of function-
ality embodied 1n the support chiplets. Chiplets also support
the tight integration of IP blocks that can otherwise be
difficult, such as those manufactured using different pro-
cessing technologies or using different feature sizes (or
utilizing different contact technologies or spacings). Thus,
multiple ICs or IC assemblies, with different physical,
clectrical, or communication characteristics may be
assembled 1 a modular manner to provide an assembly
providing desired functionalities. Chiplet systems can also
facilitate adaptation to suit needs of different larger systems
into which the chiplet system will be incorporated. In an
example, ICs or other assemblies can be optimized for the
power, speed, or heat generation for a specific function—as
can happen with sensors—can be integrated with other
devices more easily than attempting to do so on a single die.
Additionally, by reducing the overall size of the die, the
yield for chiplets tends to be higher than that of more
complex, single die devices.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be understood more fully from the
detailed description given below and from the accompany-
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2

ing drawings of various embodiments of the disclosure. The
drawings, however, should not be taken to limit the disclo-

sure to the specific embodiments, but are for explanation and
understanding only.

FIGS. 1A and 1B illustrate an example of a chiplet
system, according to an embodiment.

FIG. 2 illustrates components of an example of a memory
controller chiplet, according to an embodiment.

FIG. 3 illustrates components 1 an example of a pro-
grammable atomic unit (PAU), according to an embodiment.

FIG. 4 1s a block diagram illustrating control and data
flow 1n a pipeline, according to an embodiment.

FIG. § 1s a flow chart of an example of a method for thread
execution control 1 a barrel processor, according to an
embodiment.

FIG. 6 1s a block diagram of an example of a machine with
which, 1n which, or by which embodiments of the present
disclosure can operate.

DETAILED DESCRIPTION

FIGS. 1A-1B, described below, offers an example of a
chiplet system and the components operating therein. The
illustrated chiplet system includes a memory controller. This
memory controller includes a programmable atomic unit
(PAU) to execute a custom program, a programmable atomic
operation, 1n response to a memory request for the program-
mable atomic operation. Additional details about the PAU
are described below with respect to FIGS. 2 and 3. The
processor ol the PAU can be barrel-multithreaded and pipe-
lined.

Power management within a barrel-multithreaded proces-
sor can be an increasingly difficult task to manage while
balancing performance and throughput. In a multi-threaded
processing system, when there are no threads ready for
execution, the processor may advance to a low power state.
Cycling between a low power state and a ready state can
cause latency while threads wait for the processor to achieve
the ready state. Alternative techniques, such as clock gating
certain logic blocks or otherwise powering down aspects of
the compute pipeline that are not required for a given thread,
increase circuit complexity. Moreover, these techniques
come with their own power costs while processor logic 1s
toggled between i1dle and active states.

The present disclosure discusses a control mechanism to
replay or repeat the scheduling of a current thread when
there are no threads available for pipeline processing. By
holding scheduler outputs, logic in the compute pipeline 1s
held 1n a steady state. Power consumption due to toggling
logic states from 1dle to active are removed. As a result, the
improved control mechanism reduces overall power draw.

The present control mechanism provides distinct advan-
tages mcluding reduced circuit complexity over other pro-
posed systems that address this 1ssue, overall reduction 1n
power draw, and minimal additional circuitry to implement.

FIGS. 1A and 1B illustrate an example of a chiplet system
110, according to an embodiment. FIG. 1A 1s a representa-
tion of the chiplet system 110 mounted on a peripheral board
105, that can be connected to a broader computer system by
a peripheral component interconnect express (PCle) inter-
face, for example. The chiplet system 110 1ncludes a pack-
age substrate 15, an interposer 120, and four chiplets: an
application chiplet 125, a host interface chiplet 133, a
memory controller chiplet 140, and a memory device chiplet
150. Other systems may include many additional chiplets to
provide additional functionalities as will be apparent from
the following discussion. The package of the chiplet system
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110 1s 1llustrated with a lid or cover 165, though other
packaging techniques and structures for the chiplet system
can be used. FIG. 1B 1s a block diagram labeling the
components 1n the chiplet system for clanty.

The application chiplet 125 1s 1illustrated as including a
network-on-chup (NOC) 130 to support a chiplet network
155 for inter-chiplet communications. In example embodi-
ments NOC 130 may be included on the application chiplet
125. In an example, NOC 130 may be defined 1n response to
selected support chiplets (e.g., chiplets 135, 140, and 150)
thus enabling a designer to select an appropriate number or
chiplet network connections or switches for the NOC 130. In
an example, the NOC 130 can be located on a separate
chiplet, or even within the interposer 120. In examples as
discussed herein, the NOC 130 implements a chiplet proto-
col interface (CPI) network.

The CPI 1s a packet-based network that supports virtual
channels to enable a flexible and high-speed interaction
between chiplets. CPI enables bridging from intra-chiplet
networks to the chiplet network 155. For example, the
Advanced eXtensible Interface (AXI) 1s a widely used
specification to design intra-chip communications. AXI
specifications, however, cover a great variety of physical
design options, such as the number of physical channels,
signal timing, power, etc. Within a single chip, these options
are generally selected to meet design goals, such as power
consumption, speed, etc. However, to achieve the flexibility
of the chiplet system, an adapter, such as CPI, 1s used to
interface between the various AXI design options that can be
implemented 1n the various chiplets. By enabling a physical
channel to virtual channel mapping and encapsulating time-
based signaling with a packetized protocol, CPI bridges
intra-chiplet networks across the chiplet network 155.

CPI can use a variety of different physical layers to
transmit packets. The physical layer can include simple
conductive connections, or can include drivers to increase
the voltage, or otherwise facilitate transmitting the signals
over longer distances. An example of one such physical
layer can include the Advanced Interface Bus (AIB), which
in various examples, can be implemented 1n the interposer
120. AIB transmits and receives data using source synchro-
nous data transfers with a forwarded clock. Packets are
transierred across the AIB at single data rate (SDR) or dual
data rate (DDR) with respect to the transmitted clock.
Various channel widths are supported by AIB. AIB channel

widths are in multiples of 20 bits when operated 1n SDR
mode (20, 40, 60, . . . ), and multiples of 40 bits for DDR

mode: (40, 80, 120, . . . ). The AIB channel width includes
both transmit and receive signals. The channel can be
configured to have a symmetrical number of transmit (TX)
and receive (RX) mput/outputs (I/Os), or have a non-
symmetrical number of transmitters and receivers (e.g.,
either all transmitters or all receivers). The channel can act
as an AIB control or subordinate (1.e., “master” or “slave”)
depending on which chiplet provides the master clock. AIB
I/0 cells support three clocking modes: asynchronous (i.e.,
non-clocked), SDR, and DDR. In various examples, the

non-clocked mode 1s used for clocks and some control
signals. The SDR mode can use dedicated SDR only 1I/O

cells, or dual use SDR/DDR I/O cells.

In an example, CPI packet protocols (e.g., point-to-point
or routable) can use symmetrical receive and transmit I/O
cells within an AIB channel. The CPI streaming protocol
allows more flexible use of the AIB 1/O cells. In an example,
an AIB channel for streaming mode can configure the I/O
cells as all TX, all RX, or half TX and half RX. CPI packet

protocols can use an AIB channel 1 either SDR or DDR
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4

operation modes. In an example, the AIB channel 1s con-
figured 1n increments of 80 I/0 cells (1.e., 40 TX and 40 RX)

for SDR mode and 40 IO cells for DDR mode. The CPI
streaming protocol can use an AIB channel 1n either SDR or
DDR operation modes. Here, 1n an example, the AIB chan-
nel 1s i mcrements of 40 I/O cells for both SDR and DDR
modes. In an example, each AIB channel 1s assigned a
unique interface 1dentifier. The identifier 1s used during CPI
reset and initialization to determine paired AIB channels
across connected chiplets. In an example, the interface
identifier 1s a 20-bit value comprising a seven-bit chiplet
identifier, a seven-bit column i1dentifier, and a six-bit link
identifier. The AIB physical layer transmits the interface
identifier using an AIB out-of-band shiit register. The 20-bit
interface 1dentifier 1s transterred 1n both directions across an
AIB mterface using bits 32-51 of the shift registers.

AIB defines a stacked set of AIB channels as an AIB
channel column. An AIB channel column has some number
of AIB channels, plus an auxiliary channel. The auxiliary
channel contains signals used for AIB initialization. All AIB
channels (other than the auxiliary channel) within a column
are of the same configuration (e.g., all TX, all RX, or half TX
and half RX, as well as having the same number of data I/O
signals). In an example, AIB channels are numbered 1n
continuous increasing order starting with the AIB channel
adjacent to the AUX channel. The AIB channel adjacent to
the AUX 1s defined to be AIB channel zero.

Generally, CPI interfaces on individual chiplets can
include serialization-desenalization (SERDES) hardware.
SERDES 1nterconnects work well for scenarios 1 which
high-speed signaling with low signal count are desirable.
SERDES, however, can result 1n additional power consump-
tion and longer latencies for multiplexing and demultiplex-
ing, error detection or correction (e.g., using block level
cyclic redundancy checking (CRC)), link-level retry, or
forward error correction. However, when low latency or
energy consumption 1s a primary concern for ultra-short
reach, chiplet-to-chiplet interconnects, a parallel interface
with clock rates that allow data transfer with minimal
latency may be utilized. CPI includes elements to minimize
both latency and energy consumption in these ultra-short
reach chiplet interconnects.

For tlow control, CPI employs a credit-based technique. A
recipient, such as the application chiplet 125, provides a
sender, such as the memory controller chiplet 140, with
credits that represent available buflers. In an example, a CPI
recipient includes a bufller for each virtual channel for a
given time-unit of transmission. Thus, 1f the CPI recipient
supports five messages 1n time and a single virtual channel,
the recipient has five bullers arranged 1n five rows (e.g., one
row for each unit time). If four virtual channels are sup-
ported, then the recipient has twenty buflers arranged 1n five
rows. EHach bufler holds the payload of one CPI packet.

When the sender transmits to the recipient, the sender
decrements the available credits based on the transmaission.
Once all credits for the recipient are consumed, the sender
stops sending packets to the recipient. This ensures that the
recipient always has an available buller to store the trans-
mission.

As the recipient processes received packets and frees
buflers, the recipient communicates the available bufler
space back to the sender. This credit return can then be used
by the sender allow transmitting of additional information.

Also 1llustrated 1s a chiplet mesh network 160 that uses a
direct, chiplet-to-chiplet technique without the need for the
NOC 130. The chiplet mesh network 160 can be 1mple-

mented 1 CPI, or another chiplet-to-chiplet protocol. The
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chiplet mesh network 160 generally enables a pipeline of
chiplets where one chiplet serves as the interface to the
pipeline while other chiplets 1n the pipeline interface only
with themselves.

Additionally, dedicated device interfaces, such as one or
more mdustry standard memory interfaces 143 (such as, for
example, synchronous memory interfaces, such as DDRS,
DDR6), can also be used to mterconnect chiplets. Connec-
tion of a chiplet system or individual chiplets to external
devices (such as a larger system can be through a desired
interface (for example, a PCIE interface). Such as external
interface may be implemented, 1n an example, through a
host interface chiplet 135, which 1n the depicted example,
provides a PCIE interface external to chiplet system 110.
Such dedicated mterfaces 145 are generally employed when
a convention or standard in the industry has converged on
such an interface. The 1llustrated example of a Double Data
Rate (DDR) interface 145 connecting the memory controller
chuplet 140 to a dynamic random access memory (DRAM)
memory device 150 1s just such an industry convention.

Of the variety of possible support chiplets, the memory
controller chiplet 140 is likely present 1n the chiplet system
110 due to the near omnipresent use of storage for computer
processing as well as sophisticated state-of-the-art for
memory devices. Thus, using memory device chiplets 150
and memory controller chiplets 140 produced by others
gives chiplet system designers access to robust products by
sophisticated producers. Generally, the memory controller
chiplet 140 provides a memory device specific interface to
read, write, or erase data. Often, the memory controller
chuplet 140 can provide additional features, such as error
detection, error correction, maintenance operations, or
atomic operation execution. For some types of memory,
maintenance operations tend to be specific to the memory
device 150, such as garbage collection in NAND flash or
storage class memories, temperature adjustments (e.g., cross
temperature management) in NAND flash memories. In an
example, the maintenance operations can include logical-
to-physical (L2P) mapping or management to provide a
level of indirection between the physical and logical repre-
sentation of data. In other types of memory, for example
DRAM, some memory operations, such as refresh may be
controlled by a host processor or a memory controller at
some times, and at other times controlled by the DRAM
memory device, or by logic associated with one or more
DRAM devices, such as an interface chip (1n an example, a
butler).

Atomic operations are a data manipulation that, for
example, may be performed by the memory controller
chuplet 140. In other chiplet systems, the atomic operations
may be performed by other chuplets. For example, an atomic
operation of “increment” can be specified 1n a command by
the application chiplet 1235, the command including a
memory address and possibly an increment value. Upon
receiving the command, the memory controller chiplet 140
retrieves a number from the specified memory address,
increments the number by the amount specified in the
command, and stores the result. Upon a successiul comple-
tion, the memory controller chiplet 140 provides an indica-
tion of the command’s success to the application chiplet 125.
Atomic operations avoid transmitting the data across the
chiplet network 160, resulting 1n lower latency execution of
such commands.

Atomic operations can be classified as built-in atomics or
programmable (e.g., custom) atomics. Built-in atomics are a
finite set of operations that are immutably implemented 1n
hardware. Programmable atomics are small programs that
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can execute on a programmable atomic unit (PAU) (e.g., a
custom atomic unit (CAU)) of the memory controller chiplet
140. FIG. 1 illustrates an example of a memory controller
chiplet that discusses a PAU.

The memory device chiplet 150 can be, or include any
combination of, volatile memory devices or non-volatile
memories. Examples of volatile memory devices include,
but are not limited to, random access memory (RAM )—such

as DRAM, synchronous DRAM (SDRAM), graphics double
data rate type 6 SDRAM (GDDR6 SDRAM), among others.
Examples of non-volatile memory devices include, but are
not limited to, negative-and-(NAND)-type flash memory,

storage class memory (e.g., phase-change memory or mem-
ristor based technologies), ferroelectric RAM (FeRAM),

among others. The illustrated example includes the memory
device 150 as a chiplet, however, the memory device 150
can reside elsewhere, such as 1n a diflerent package on the
peripheral board 105. For many applications, multiple
memory device chiplets may be provided. In an example,
these memory device chiplets may each implement one or
multiple storage technologies. In an example, a memory
chiplet may include, multiple stacked memory die of dii-
terent technologies, for example one or more SRAM devices
stacked or otherwise 1n communication with one or more
DRAM devices. Memory controller 140 may also serve to
coordinate operations between multiple memory chiplets 1n
chiplet system 110; for example, to utilize one or more
memory chiplets 1n one or more levels of cache storage, and
to use one or more additional memory chiplets as main
memory. Chiplet system 110 may also include multiple
memory controllers 140, as may be used to provide memory
control functionality for separate processors, sensors, net-
works, etc. A chiplet architecture, such as chiplet system 110
offers advantages 1n allowing adaptation to different
memory storage technologies; and different memory inter-
faces, through wupdated chiplet configurations, without
requiring redesign of the remainder of the system structure.

FIG. 2 1llustrates components of an example of a memory
controller chiplet 205, according to an embodiment. The
memory controller chiplet 205 includes a cache 210, a cache
controller 215, an off-die memory controller 220 (e.g., to
communicate with ofl-die memory 275), a network commu-
nication interface 225 (e.g., to interface with a chiplet
network 285 and communicate with other chiplets), and a set
of atomic and merge units 250. Members of this set can
include, for example, a write merge unit 255, a memory
hazard unit 260, built-in atomic unit 265, or a PAU 270. The
various components are illustrated logically, and not as they
necessarily would be implemented. For example, the built-in
atomic unit 265 likely comprises diflerent devices along a
path to the off-die memory. For example, the built-in atomic
unit 2635 could be 1n an mterface device/bufler on a memory
chiplet, as discussed above. In contrast, the programmable
atomic unit 270 could be implemented in a separate proces-
sor on the memory controller chiplet 205 (but in various
examples may be implemented i1n other locations, for
example on a memory chiplet).

The off-die memory controller 220 1s directly coupled to
the off-die memory 275 (e.g., via a bus or other communi-
cation connection) to provide write operations and read
operations to and from the one or more ofl-die memory
devices, such as off-die memory 275 and off-die memory
280. In the depicted example, the off-die memory controller
220 1s also coupled for output to the atomic and merge unit
250, and for mput to the cache controller 215 (e.g., a
memory side cache controller).
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In the example configuration, cache controller 215 1s
directly coupled to the cache 210, and may be coupled to the
network communication interface 225 for iput (such as
incoming read or write requests), and coupled for output to
the off-die memory controller 220.

The network communication interface 225 includes a
packet decoder 230, network mput queues 2335, a packet
encoder 240, and network output queues 245 to support a
packet-based chiplet network 285, such as CPI. The chiplet
network 285 can provide packet routing between and among,
processors, memory controllers, hybrid threading proces-
sors, configurable processing circuits, or communication
interfaces. In such a packet-based communication system,
cach packet typically includes destination and source
addressing, along with any data payload or instruction. In an
example, the chiplet network 285 can be implemented as a
collection of crossbar switches having a folded Clos con-
figuration, or a mesh network providing for additional
connections, depending upon the configuration.

In various examples, the chiplet network 2835 can be part
of an asynchronous switching fabric. Here, a data packet can
be routed along any of various paths, such that the arrival of
any selected data packet at an addressed destination can
occur at any of multiple different times, depending upon the
routing. Additionally, chiplet network 285 can be mmple-
mented at least 1n part as a synchronous communication
network, such as a synchronous mesh communication net-
work. Both configurations of communication networks are
contemplated for use for examples 1n accordance with the
present disclosure.

The memory controller chiplet 205 can receive a packet
having, for example, a source address, a read request, and a
physical address. In response, the ofl-die memory controller
220 or the cache controller 215 will read the data from the
specified physical address (which can be in the ofl-die
memory 275 or in the cache 210), and assemble a response
packet to the source address contaiming the requested data.
Similarly, the memory controller chiplet 205 can receive a
packet having a source address, a write request, and a
physical address. In response, the memory controller chiplet
205 will write the data to the spec:lﬁed physwal address
(which can be 1in the cache 210 or in the ofi-die memories
275 or 280), and assemble a response packet to the source
address containing an acknowledgement that the data was
stored to a memory.

Thus, the memory controller chiplet 205 can receive read
and write requests via the chiplet network 285 and process
the requests using the cache controller 215 interfacing with
the cache 210, 11 possible. I the request cannot be handled
by the cache controller 215, the ofl-die memory controller
220 handles the request by communication with the ofl-die
memories 275 or 280, the atomic and merge unit 250, or
both. As noted above, one or more levels of cache may also
be implemented 1n ofl-die memories 275 or 280; and in some
such examples may be accessed directly by cache controller
215. Data read by the off-die memory controller 220 can be
cached 1n the cache 210 by the cache controller 215 for later
use.

The atomic and merge unit 250 are coupled to receive (as
input) the output of the ofl-die memory controller 220, and
to provide output to the cache 210, the network communi-
cation iterface 225, or directly to the chiplet network 285.
The memory hazard unit 260, write merge unit 255 and the
built-in (e.g., predetermined) atomic unit 265 can each be
implemented as state machines with other combinational
logic circuitry (such as adders, shifters, comparators, AND
gates, OR gates, XOR gates, or any suitable combination
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thereol) or other logic circuitry. These components can also
include one or more registers or bullers to store operand or
other data. The PAU 270 can be implemented as one or more
processor cores or control circuitry, and various state
machines with other combinational logic circuitry or other
logic circuitry, and can also include one or more registers,
bufters, or memories to store addresses, executable instruc-
tions, operand and other data, or can be implemented as a
Processor.

The write merge unit 255 receives read data and request
data, and merges the request data and read data to create a
single unit having the read data and the source address to be
used 1n the response or return data packet). The write merge
umt 255 provides the merged data to the write port of the
cache 210 (or, equivalently, to the cache controller 215 to
write to the cache 210). Optionally, the write merge unit 255
provides the merged data to the network commumnication
interface 225 to encode and prepare a response or return data
packet for transmission on the chiplet network 285.

When the request data 1s for a built-in atomic operation,
the built-in atomic unit 2635 receives the request and reads
data, either from the write merge unit 255 or directly from
the ofl-die memory controller 220. The atomic operation 1s
performed, and using the write merge unit 2535, the resulting
data 1s written to the cache 210, or provided to the network
communication interface 225 to encode and prepare a
response or return data packet for transmission on the chiplet
network 285.

The built-in atomic unit 265 handles predefined atomic
operations such as fetch-and-increment or compare-and-
swap. In an example, these operations perform a simple
read-modify-write operation to a single memory location of
32-bytes or less 1n size. Atomic memory operations are
initiated from a request packet transmitted over the chiplet
network 285. The request packet has a physical address,
atomic operator type, operand size, and optionally up to
32-bytes of data. The atomic operation performs the read-
modity-write to a cache memory line of the cache 210,
filling the cache memory 1f necessary. The atomic operator
response can be a simple completion response, or a response

with up to 32-bytes of data. Example atomic memory
operators 1nclude fetch-and-AND, fetch-and-OR, fetch-and-

XOR, {fetch-and-add, fetch-and-subtract, fetch-and-incre-
ment, fetch-and-decrement, fetch-and-minimum, fetch-and-
maximum, fetch-and-swap, and compare-and-swap. In
various example embodiments, 32-bit and 64-bit operations
are supported, along with operations on 16 or 32 bytes of
data. Methods disclosed herein are also compatible with
hardware supporting larger or smaller operations and more
or less data.

Built-in atomic operations can also involve requests for a
“standard” atomic operation on the requested data, such as
comparatively simple, single cycle, integer atomics—such
as fetch-and-increment or compare-and-swap—which will
occur with the same throughput as a regular memory read or
write operation not involving an atomic operation. For these
operations, the cache controller 215 may generally reserve a
cache line i the cache 210 by setting a hazard bit (in
hardware), so that the cache line cannot be read by another
process while 1t 1s 1n transition. The data 1s obtained from
cither the off-die memory 275 or the cache 210, and 1is
provided to the built-in atomic operation unit 263 to perform
the requested atomic operation. Following the atomic opera-
tion, 1 addition to providing the resulting data to the packet
encoder 240 to encode outgoing data packets for transmis-
sion on the chiplet network 285, the built-in atomic opera-
tion unit 265 provides the resulting data to the write merge
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unit 255, which will also write the resulting data to the cache
210. Following the writing of the resulting data to the cache
210, any corresponding hazard bit which was set will be
cleared by the memory hazard unit 260.

The PAU 270 enables high performance (high throughput
and low latency) for programmable atomic operations (also
referred to as “custom atomic transactions” or “custom
atomic operations™), comparable to the performance of
built-in atomic operations. Rather than executing multiple
memory accesses, 1n response to an atomic operation request
designating a programmable atomic operation and a memory
address, circuitry 1in the memory controller chiplet 2035
transiers the atomic operation request to PAU 270 and sets
a hazard bit stored 1n a memory hazard register correspond-
ing to the memory address of the memory line used in the
atomic operation, to ensure that no other operation (read,
write, or atomic) 1s performed on that memory line, which
hazard bit 1s then cleared upon completion of the atomic
operation. Additional, direct data paths provided for the PAU
270 executing the programmable atomic operations allow
for additional write operations without any limitations
imposed by the bandwidth of the communication networks
and without increasing any congestion of the communica-
tion networks.

The PAU 270 includes a multi-threaded processor, for
example, such as a RISC-V ISA based multi-threaded pro-
cessor, having one or more processor cores, and further
having an extended instruction set for executing program-
mable atomic operations. When provided with the extended
instruction set for executing programmable atomic opera-
tions, the PAU 270 can be embodied as one or more hybrid
threading processors. In some example embodiments, the
PAU 270 provides barrel-style, round-robin instantaneous
thread switching to maintain a high instruction-per-clock
rate.

Programmable atomic operations can be performed by the
PAU 270 involving requests for a programmable atomic
operation on the requested data. A user can prepare pro-
gramming code to provide such programmable atomic
operations. For example, the programmable atomic opera-
tions can be comparatively simple, multi-cycle operations
such as floating-point addition, or comparatively complex,
multi-instruction operations such as a Bloom filter insert.
The programmable atomic operations can be the same as or
different than the built-in atomic operations, isofar as they
are defined by the user rather than a system vendor. For these
operations, the cache controller 215 can reserve a cache line
in the cache 210, by setting a hazard bit (in hardware), so
that cache line cannot be read by another process while it 1s
in transition. The data 1s obtained from either the cache 210
or the off-die memories 275 or 280, and 1s provided to the
PAU 270 to perform the requested programmable atomic
operation. Following the atomic operation, the PAU 270 will
provide the resulting data to the network communication
interface 225 to directly encode outgoing data packets
having the resulting data for transmission on the chiplet
network 285. In addition, the PAU 270 will provide the
resulting data to the cache controller 215, which will also
write the resulting data to the cache 210. Following the
writing of the resulting data to the cache 210, any corre-
sponding hazard bit which was set will be cleared by the
cache control circuit 215.

In selected examples, the approach taken for program-
mable atomic operations 1s to provide multiple, generic,
custom atomic request types that can be sent through the
chiplet network 285 to the memory controller chuplet 205
from an originating source such as a processor or other
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system component. The cache controllers 215 or oifi-die
memory controller 220 identify the request as a custom
atomic and forward the request to the PAU 270. In a
representative embodiment, the PAU 270: (1) 1s a program-
mable processing element capable of efliciently performing
a user defined atomic operation; (2) can perform load and
stores to memory, arithmetic and logical operations and
control flow decisions; and (3) leverages the RISC-V ISA
with a set ol new, specialized instructions to {facilitate
interacting with such controllers 215, 220 to atomically
perform the user-defined operation. In desirable examples,
the RISC-V ISA contains a full set of istructions that
support high level language operators and data types. The
PAU 270 can leverage the RISC-V ISA, but will commonly
support a more limited set of instructions and limited
register file size to reduce the die size of the umit when
included within the memory controller chiplet 205.

As mentioned above, prior to the writing of the read data
to the cache 210, the set hazard bit for the reserved cache
line 1s to be cleared, by the memory hazard clear unit 260.
Accordingly, when the request and read data 1s received by
the write merge unit 255, a reset or clear signal can be
transmitted by the memory hazard clear unit 260 to the cache
210 to reset the set memory hazard bit for the reserved cache
line. Also, resetting this hazard bit will also release a
pending read or write request involving the designated (or
reserved) cache line, providing the pending read or write
request to an ibound request multiplexer for selection and
processing.

FIG. 3 illustrates components 1 an example of a pro-
grammable atomic unit (PAU) 300, such as those noted
above with respect to FIG. 1 (e.g., in the memory controller
140) and FIG. 2 (e.g., PAU 270), according to an embodi-
ment. As 1llustrated, the PAU 300 includes a processor 305,
local memory 310 (e.g., SRAM), and a controller 315 for the
local memory 310.

In an example, the processor 305 1s a barrel processor,
with circuitry to switch between diflerent register files (e.g.,
sets of registers containing current processing state) upon
cach clock cycle of the processor 305. Although processor
305 1s discussed herein 1in an example implementation 1n
PAU 300 of a memory controller chiplet 205, the configu-
ration and operation of processor 305 may also be used 1n
other functions of memory controller chiplet 205 (for
example, to perform built-in atomic operations), or may be
used 1n a variety of other contexts, including but not limited
to, 1n other chiplets of a chiplet system 110. This configu-
ration ol a barrel processor enables eflicient context switch-
ing between currently executing threads. In an example, the
processor 3035 supports eight threads, resulting in eight
register files. In an example, some or all of the register files
330 are not integrated into the processor 305, but rather
reside 1n the local memory 310. This reduces circuit com-
plexity in the processor 305 by eliminating the traditional
flip-tflops used for these registers.

The local memory 310 can also house a cache and
instructions for atomic operations 320. The atomic instruc-
tions 320 comprise sets of instructions to support the various
application-loaded atomic operations. When an atomic
operation 1s requested, e.g., by the application chiplet 125,
a set of nstructions corresponding to the atomic operation
are executed by the processor 305. In an example, the
instructions 320 reside 1n partitions of the local memory 310.
In this example, the specific programmable atomic operation
being requested by a requesting process can identify the
programmable atomic operation by the partition number.
The partition number can be established when the program-




US 12,282,300 B2

11

mable atomic operation 1s registered with (e.g., loaded onto)
the PAU 300. Additional metadata for the programmable
atomic 1nstructions, such as the partition tables, can also be
stored 1n the local memory 310.

Atomic operations manipulate the cache 325, which 1s
generally synchronized (e.g., flushed) when a thread for an
atomic operation completes. Thus, aside from 1nitial loading
from the external memory, such as the off-die memory 275
or 280, latency 1s reduced for most memory operations
during execution ol a programmable atomic operation
thread.

A barrel processor, such as the processor 305, can be
configured to service a number of threads i1n a rotating
manner. The processor 305 1s configured with thread sched-
uling circuitry 335 to iterate through scheduling queues and
identify a thread that 1s ready for execution. The thread
scheduling queues may include instructions, operations,
operands, thread identifiers, or other metadata about a
thread.

The thread scheduling circuitry 335 i1denftifies a first
thread that 1s ready for execution and imects into the
compute pipeline. Thread information, such as the thread
metadata, 1s saved in lookaside storage, for later reference.
If, during the subsequent cycle there are no other threads
ready for execution, the thread scheduling circuitry 335 wall
enter an 1dle state. Specifically, the thread scheduling cir-
cuitry 335 propagates a signal down the compute pipeline
that the thread 1s an invalid thread, and then reposts or
replays the previous thread using the thread information
from the lookaside storage. By reusing the previous thread,
the logic 1n the compute pipeline 1s held 1n a steady state. As
a result, the components in the compute pipeline do not have
to power down, store and load state, or perform other
complex operations while the processor 303 1dles. While the
compute pipeline does use power to replay the same thread
instruction, this power 1s less than what would be used to
change gate states.

The thread scheduling circuitry 335 provides for thread
replay to preserve state in a barrel processor. The thread
scheduling circuitry 333 1s configured to schedule a current
thread to place into a pipeline for the barrel processor 305
during a clock cycle. The barrel processor 335 1s used to
attempt to schedule threads on each clock cycle.

The thread scheduling circuitry 335 updates or causes the
update of the current thread 1n a temporary memory. In an
example, the temporary memory comprises a register. The
register may be a dedicated register for the thread scheduling,
circuitry 335 or the processor 305 with direct data paths
from the processor 305 or thread scheduling circuitry 335 to
the register. The register may be a limited size, such as four
bits, 6 bits, 8 bits, etc. to store specific information. In an
example, the register 1s used to store a thread i1dentifier and
thread metadata.

In another implementation, the register may be stored in
local random-access memory of the barrel processor 305,
such as local memory 310. In this implementation, the
register may have a reserved address space 1n local memory
310 for use by the thread scheduling circuitry 335.

The thread scheduling circuitry 333 detects that no thread
1s available to schedule on a clock cycle subsequent to the
cycle that the current thread 1s scheduled. For example, 1n an
embodiment, 1 a processor that handles eight concurrent
threads, where each thread 1s allotted a clock cycle, the
thread scheduling circuitry 335 may detect that no threads
are available to be serviced during the next seven clock
cycles (seven other threads). In another example embodi-
ment, only active threads are considered for scheduling.
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Thus, when all other threads are busy, for instance, waiting
for memory responses, these threads may not be ready for
rescheduling. In this case, the scheduler detects that no
threads are available to be serviced and reschedules the
current thread to the next available cycle. The detection that
all other threads are busy takes a cycle, so the current thread
may be rescheduled two cycles after its first attempted
execution.

In response to detecting that no thread 1s available on the
subsequent clock cycle, the thread scheduling circuitry 335
re-schedules, replays, or repeat schedules the current thread
based on the contents of the temporary memory. In an
example, the thread scheduling circuitry rewrites or causes
the rewriting of the thread to the temporary memory, in
response to detecting that no thread i1s available on the
subsequent clock cycle.

A signal may be asserted to indicate whether a cycle 1s
valid or invalid. Thus, a valid cycle signal may be asserted
or propagated through the compute pipeline to indicate that
the current thread or istruction of a thread 1s a valid thread
or instruction. This may be performed the first time a thread
or 1struction 1s passed through the pipeline. When a thread
or instruction 1s replayed to eflectively idle the processor
303, the signal may be changed to an invalid cycle signal to
indicate to the compute pipeline that the thread 1s a replayed
thread. In this case, the compute pipeline may hold a steady
state based on the asserted invalid cycle signal.

Thus, 1n an embodiment, 1n conjunction with scheduling
the current thread to place into the pipeline, the thread
scheduling circuitry 3335 propagates or causes the propaga-
tion of a valid cycle signal to the pipeline to cause the
pipeline to alter state based on the mstruction of the current
thread.

When a diferent thread is available to schedule, then the
current thread can be released from stasis in the pipeline. As
such, when the thread scheduling circuitry 3335 detects a
thread 1n the thread queue that has a valid instruction for the
pipeline, the thread scheduling circuitry 335 schedules the
different thread. The thread scheduling circuitry 335 can
store the different thread identifier in the temporary memory,
which 1n turn will cause the pipeline to fetch an instruction
for the newly 1dentified thread and pass it into the compute
pipeline. In addition, the thread scheduling circuitry 335
may propagate or cause the propagation of a valid cycle
signal to the pipeline to cause the pipeline to alter state based
on the mnstruction of the different thread.

As shown 1n FIG. 3, the thread scheduling circuitry 335
1s 1ntegrated in the barrel processor 3035, and the barrel
processor 305 included 1n a programmable atomic unit 205.
The programmable atomic unit 205 1s included 1n a memory
controller. In an example, the memory controller 1s a chiplet
(e.g., memory controller chiplet 220 or memory controller
chuplet 140) in a chiplet system 110.

FIG. 4 1s a block diagram illustrating control and data
flow 1 a pipeline, according to an embodiment. A thread
scheduler 335 1s configured to service a number of thread
scheduling queues 405A-N (collectively referred to here as
403). Thread scheduling queues 405 can include information
for each thread and instructions that are queued for the
corresponding thread. The queue contents may include
thread identifiers, instructions, priority information, status or
state flags, or the like.

When the thread scheduler 335 schedules a thread, 1t takes
information from the selected queue. The thread’s informa-
tion, such as a thread identifier, 1s sent to the compute
pipeline 410. The compute pipeline 410 includes various
components that use the thread 1dentifier to fetch an mstruc-
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tion to execute, perform memory operations to obtain oper-
and data from a source address or multiple source addresses,
use the instruction to obtain a result, and store the result to
a destination address. The actions performed 1n the compute
pipeline 410 are performed as an atomic operation.

In the example shown 1n FIG. 4, the thread information 1s
fed into a multiplexer (MUX) 413 and stored in a temporary
storage 420. Temporary storage 420 may be a register or
other lookaside memory for dedicated use by the thread
scheduler 335. The thread information 1s propagated to the
compute pipeline 410.

A valid signal 425 1s used as a select signal to the MUX
415, to control whether the value from the temporary storage
420 or the data from the thread scheduler 335 1s used by the
compute pipeline 410. When a new thread 1s scheduled, the
valid signal 423 1s set to indicate that the thread 1s valid and
the thread information for the new thread 1s stored in the
temporary storage 420 and passed to the compute pipeline
410. When no other thread 1s ready for scheduling, the valid
signal 425 1s set to indicate that the thread 1s mvalid (e.g.,
being recycled). In this case, the same thread information 1s
tetched from the temporary storage 420 and propagated to
the compute pipeline 410. The compute pipeline 410 also
receives the valid signal 425 and when the valid signal 425
1s set to indicate that the thread 1s invalid, the compute
pipeline 410 will maintain a steady state and not change
state. This allows the compute pipeline 410 to stall or idle
without changing its power state. In other words, no com-
ponents in the compute pipeline 410 power down, and no
state 1s stored for later reinstatement.

When a different thread 1s ready to be scheduled, the valid
signal 425 1s changed to indicate that the different thread 1s
valid (e.g., logical one). The different thread identifier or
other information 1s sent to the MUX 415. This thread
information 1s stored in the temporary memory 420, replac-
ing the previous thread identifier. The thread information 1s
also passed to the compute pipeline 410 to be executed.

FI1G. 5 1s a flow chart of an example of a method for thread
replay to preserve state 1n a barrel processor, according to an
embodiment. Operations of the method 500 are performed
by computer hardware, such as that described with respect
to FIGS. 1A-1B (e.g., memory controller chiplet), FIG. 2,
FIG. 3, or FIG. 6 (e.g., processing circuitry). At 505, the
current thread 1s scheduled to be placed 1nto a pipeline for
the barrel processor (e.g., processor 305). The thread 1s
scheduled on a clock cycle by a thread scheduling circuitry
(e.g., thread scheduling circuitry 335). The barrel processor
1s configured to attempt to schedule threads on each clock
cycle

In an embodiment, 1n conjunction with scheduling the
current thread to place into the pipeline, a valid cycle signal
1s propagated to the pipeline to cause the pipeline to alter
state based on the instruction of the current thread. In an
embodiment, propagating an invalid cycle signal to the
pipeline 1s used to cause the pipeline to maintain state.

At 510, the current thread 1s stored 1n a temporary
memory, such as temporary storage 420. In an embodiment,
the temporary memory comprises a register. In a further
embodiment, the register 1s stored 1n local random-access
memory of the barrel processor.

At 515, the thread scheduling circuitry detects that no
thread 1s available on a subsequent clock cycle.

At 520, in response to detecting that no thread is available
on a clock cycle subsequent to the cycle that the current
thread 1s scheduled, the thread scheduling circuitry re-
schedules, replays, or repeat schedules the current thread
based on the contents of the temporary memory. When no
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other thread 1s ready to be scheduled, the thread scheduling
circuitry may rewrite the thread to the temporary memory, 1n
response to detecting that no thread 1s available on the
subsequent clock cycle.

In an embodiment, repeat scheduling the current thread
comprises repeat scheduling an instruction of the current
thread. The instruction associated with the thread may be an
atomic operation. The atomic operation may be a built-in
atomic or programmable atomic operation. The atomic
operation may be stored in local memory 310 as atomic
instructions 320.

The method 500 also includes operations of determining,
a different thread 1s available to schedule and then sched-
uling an instruction of the different thread to place into the
pipeline. This different thread 1s stored in the temporary
memory and a valid cycle signal 1s propagated to the
pipeline to cause the pipeline to alter state based on the
instruction of the different thread.

In an embodiment, the thread scheduling circuitry 1s
integrated 1n the barrel processor, the barrel processor 1s
included in a programmable atomic unit, and the program-
mable atomic unit 1s included 1n a memory controller. In a
turther embodiment, the memory controller 1s a chiplet 1n a
chiplet system, such as chiplet system 110.

FIG. 6 1llustrates a block diagram of an example machine
600 with which, in which, or by which any one or more of
the techmques (e.g., methodologies) discussed herein can be
implemented. Examples, as described herein, can include, or
can operate by, logic or a number of components, or mecha-
nisms 1n the machine 600. Circuitry (e.g., processing cir-
cuitry) 1s a collection of circuits implemented 1n tangible
entities of the machine 600 that include hardware (e.g.,
simple circuits, gates, logic, etc.). Circuitry membership can
be flexible over time. Circuitries include members that can,
alone or in combination, perform specified operations when
operating: thus processing circuitry in various instances, for
example 1n various controllers as described 1n the specifi-
cation, can include one or more processors, or cores of
processors, or other instruction-executing devices. In an
example, hardware of the circuitry can be immutably
designed to carry out a specific operation (e.g., hardwired).
In an example, the hardware of the circuitry can include
variably connected physical components (e.g., execution
units, transistors, simple circuits, etc.) including a machine
readable medium physically modified (e.g., magnetically,
clectrically, moveable placement of mnvariant massed par-
ticles, etc.) to encode instructions of the specific operation.
In connecting the physical components, the underlying
clectrical properties of a hardware constituent are changed,
for example, from an 1nsulator to a conductor or vice versa.
The mstructions enable embedded hardware (e.g., the execu-
tion units or a loading mechanism) to create members of the
circuitry 1n hardware via the variable connections to carry
out portions of the specific operation when 1n operation.
Accordingly, in an example, the machine-readable medium
clements are part of the circuitry or are communicatively
coupled to the other components of the circuitry when the
device 1s operating. In an example, any of the physical
components can be used 1n more than one member of more
than one circuitry. For example, under operation, execution
units can be used 1n a first circuit of a first circuitry at one
point 1n time and reused by a second circuit in the first
circuitry, or by a third circuit 1n a second circuitry at a
different time. Additional examples of these components
with respect to the machine 600 follow.

In alternative embodiments, the machine 600 can operate
as a standalone device or can be connected (e.g., networked)
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to other machines. In a networked deployment, the machine
600 can operate 1n the capacity of a server machine, a client
machine, or both 1n server-client network environments. In
an example, the machine 600 can act as a peer machine 1n
peer-to-peer (P2P) (or other distributed) network environ-
ment. The machine 600 can be a personal computer (PC), a
tablet PC, a set-top box (STB), a personal digital assistant
(PDA), a mobile telephone, a web appliance, a network
router, switch or bridge, or any machine capable of execut-
ing instructions (sequential or otherwise) that specily actions
to be taken by that machine. Further, while only a single
machine 1s illustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein, such as cloud computing, software as a service
(SaaS), other computer cluster configurations.

The machine (e.g., computer system) 600 can include a
hardware processor 602 (e.g., a central processing unit
(CPU), a graphics processing unit (GPU), a hardware pro-
cessor core, or any combination thereol), a main memory
604, a static memory (e.g., memory or storage for firmware,
microcode, a basic-input-output (BIOS), unified extensible
firmware interface (UEFI), etc.) 606, and mass storage 608
(e.g., hard drives, tape drives, flash storage, or other block
devices) some or all of which can communicate with each
other via an interlink (e.g., bus) 630. The machine 600 can
turther include a display unit 610, an alphanumeric input
device 612 (e.g., a keyboard), and a user interface (UI)
navigation device 614 (e.g., a mouse). In an example, the
display umt 610, input device 612 and Ul navigation device
614 can be a touch screen display. The machine 600 can
additionally 1nclude a storage device (e.g., drive unit) 608,
a signal generation device 618 (e.g., a speaker), a network
interface device 620, and one or more sensors 616, such as
a global positioning system (GPS) sensor, compass, accel-
erometer, or other sensor. The machine 600 can include an
output controller 628, such as a senial (e.g., universal serial
bus (USB)), parallel, or other wired or wireless (e.g., inira-
red (IR), near field communication (NFC), etc.) connection
to communicate or control one or more peripheral devices
(e.g., a printer, card reader, etc.).

Registers of the processor 602, the main memory 604, the
static memory 606, or the mass storage 608 can be, or
include, a machine readable medium 622 on which 1s stored
one or more sets of data structures or mstructions 624 (e.g.,
soltware) embodying or utilized by any one or more of the
techniques or functions described herein. The instructions
624 can also reside, completely or at least partially, within
any of registers of the processor 602, the main memory 604,
the static memory 606, or the mass storage 608 during
execution thereof by the machine 600. In an example, one or
any combination of the hardware processor 602, the main
memory 604, the static memory 606, or the mass storage 608
can constitute the machine readable media 622. While the
machine readable medium 622 i1s illustrated as a single
medium, the term “machine readable medium” can include
a single medium or multiple media (e.g., a centralized or
distributed database, or associated caches and servers) con-
figured to store the one or more 1nstructions 624.

The term “machine readable medium” can include any
medium that 1s capable of storing, encoding, or carrying
instructions for execution by the machine 600 and that cause
the machine 600 to perform any one or more of the tech-
niques of the present disclosure, or that i1s capable of storing,
encoding or carrying data structures used by or associated
with such instructions. Non-limiting machine-readable
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medium examples can include solid-state memories, optical
media, magnetic media, and signals (e.g., radio frequency
signals, other photon-based signals, sound signals, etc.). In
an example, a non-transitory machine-readable medium
comprises a machine-readable medium with a plurality of
particles having invariant (e.g., rest) mass, and thus are
compositions of matter. Accordingly, non-transitory
machine-readable media are machine readable media that do
not 1nclude ftransitory propagating signals. Specific
examples of non-transitory machine readable media can
include: non-volatile memory, such as semiconductor
memory devices (e.g., electrically programmable read-only
memory (EPROM), electrically erasable programmable
read-only memory (EEPROM)) and flash memory devices;

magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and CD-ROM and DVD-

ROM disks.

In an example, information stored or otherwise provided
on the machine readable medium 622 can be representative
of the instructions 624, such as instructions 624 themselves
or a format from which the instructions 624 can be derived.
This format from which the instructions 624 can be derived
can 1nclude source code, encoded instructions (e.g., 1n
compressed or encrypted form), packaged 1nstructions (e.g.,
split into multiple packages), or the like. The information
representative of the istructions 624 1n the machine read-
able medium 622 can be processed by processing circuitry
into the instructions to implement any of the operations
discussed herein. For example, deriving the instructions 624
from the information (e.g., processing by the processing
circuitry) can include: compiling (e.g., from source code,
object code, etc.), mterpreting, loading, organizing (e.g.,
dynamically or statically linking), encoding, decoding,
encrypting, unencrypting, packaging, unpackaging, or oth-
cerwise manipulating the information into the instructions
624.

In an example, the derivation of the mstructions 624 can
include assembly, compilation, or interpretation of the infor-
mation (e.g., by the processing circuitry) to create the
instructions 624 from some intermediate or preprocessed
format provided by the machine readable medium 622. The
information, when provided 1n multiple parts, can be com-
bined, unpacked, and modified to create the instructions 624.
For example, the information can be 1n multiple compressed
source code packages (or object code, or binary executable
code, etc.) on one or several remote servers. The source code
packages can be encrypted when in transit over a network
and decrypted, uncompressed, assembled (e.g., linked) 1f
necessary, and compiled or interpreted (e.g., into a library,
stand-alone executable etc.) at a local machine, and executed
by the local machine.

The instructions 624 can be further transmitted or
received over a communications network 626 using a trans-
mission medium via the network interface device 620 uti-
lizing any one of a number of transfer protocols (e.g., frame
relay, iternet protocol (IP), transmission control protocol
(TCP), user datagram protocol (UDP), hypertext transier
protocol (HTTP), etc.). Example communication networks
can include a local area network (LAN), a wide area network
(WAN), a packet data network (e.g., the Internet), mobile
telephone networks (e.g., cellular networks), plain old tele-
phone (POTS) networks, and wireless data networks (e.g.,
Institute of Electrical and Electronics Engineers (IEEE)

802.11 family of standards known as Wi-Fi®, IEEE 802.16
family of standards known as WiMax®), IEEE 802.15.4
family of standards, peer-to-peer (P2P) networks, among
others. In an example, the network interface device 620 can
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include one or more physical jacks (e.g., Ethernet, coaxial,
or phone jacks) or one or more antennas to connect to the
communications network 626. In an example, the network
interface device 620 can include a plurality of antennas to
wirelessly communicate using at least one of single-input
multiple-output (SIMO), multiple-input multiple-output
(MIMO), or multiple-input single-output (MISO) tech-
niques. The term “transmission medium” shall be taken to
include any intangible medium that 1s capable of storing,
encoding or carrying instructions for execution by the
machine 600, and includes digital or analog communications
signals or other intangible medium to facilitate communi-
cation of such software. A transmission medium 1s a
machine readable medium. To better 1llustrate the methods
and apparatuses described herein, a non-limiting set of
Example embodiments are set forth below as numerically
identified Examples.

Example 1 1s an apparatus, comprising: a barrel processor,
comprising: a temporary memory; and a thread scheduling
circuitry; wherein the barrel processor 1s configured to
perform operations through use of the thread scheduling
circuitry, the operations including those to: schedule a
current thread to place into a pipeline for the barrel processor
on a clock cycle, the barrel processor to schedule threads on
each clock cycle; store the current thread in the temporary
memory; detect that no thread 1s available on a clock cycle
subsequent to the cycle that the current thread 1s scheduled;
and 1n response to detecting that no thread 1s available on the
subsequent clock cycle, repeat scheduling the current thread
based on the contents of the temporary memory.

In Example 2, the subject matter of Example 1 includes,
wherein the barrel processor 1s to, in conjunction with
scheduling the current thread to place into the pipeline,
propagating a valid cycle signal to the pipeline to cause the
pipeline to alter state based on the mstruction of the current
thread.

In Example 3, the subject matter of Examples 1-2
includes, wherein the temporary memory comprises a reg-
1ster.

In Example 4, the subject matter of Example 3 includes,
wherein the register 1s stored 1n local random-access
memory of the barrel processor.

In Example 5, the subject matter of Examples 1-4
includes, wherein repeat scheduling the current thread com-
prises repeat scheduling an instruction of the current thread.

In Example 6, the subject matter of Examples 1-3
includes, wherein the barrel processor 1s to propagate an
invalid cycle signal to the pipeline to cause the pipeline to
maintain state.

In Example 7, the subject matter of Examples 1-6
includes, wherein the barrel processor 1s to: determine a
different thread 1s available to schedule; schedule an instruc-
tion of the different thread to place into the pipeline; store
the different thread in the temporary memory; and propagate
a valid cycle signal to the pipeline to cause the pipeline to
alter state based on the instruction of the different thread.

In Example 8, the subject matter of Examples 1-7
includes, wherein the thread scheduling circuitry 1s to
rewrite the thread to the temporary memory, in response to
detecting that no thread 1s available on the subsequent clock
cycle.

In Example 9, the subject matter of Examples 1-8
includes, wherein the thread scheduling circuitry 1s 1inte-
grated 1n the barrel processor, the barrel processor included
in a programmable atomic unit, and the programmable
atomic unit 1s included 1n a memory controller.

10

15

20

25

30

35

40

45

50

55

60

65

18

In Example 10, the subject matter of Example 9 includes,
wherein the memory controller 1s a chiplet 1n a chiplet
system.

Example 11 1s a method, comprising: scheduling, at a
barrel processing including thread scheduling circuitry, a
current thread to place into a pipeline for a barrel processor
on a clock cycle, the barrel processor to schedule threads on
cach clock cycle: storing the current thread 1n a temporary
memory; detecting that no thread 1s available on a clock
cycle subsequent to the cycle that the current thread is
scheduled; and 1n response to detecting that no thread 1s
available on the subsequent clock cycle, repeat scheduling
the current thread based on the contents of the temporary
memory.

In Example 12, the subject matter of Example 11 includes,
in conjunction with scheduling the current thread to place
into the pipeline, propagating a valid cycle signal to the
pipeline to cause the pipeline to alter state based on the
instruction of the current thread.

In Example 13, the subject matter of Examples 11-12
includes, wherein the temporary memory comprises a reg-
1ster.

In Example 14, the subject matter of Example 13
includes, wherein the register i1s stored in local random-
access memory of the barrel processor.

In Example 15, the subject matter of Examples 11-14
includes, wherein repeat scheduling the current thread com-
prises repeat scheduling an instruction of the current thread.

In Example 16, the subject matter of Examples 11-15
includes, propagating an invalid cycle signal to the pipeline
to cause the pipeline to maintain state.

In Example 17, the subject matter of Examples 11-16
includes, determining a different thread 1s available to sched-
ule; scheduling an instruction of the different thread to place
into the pipeline; storing the different thread 1n the tempo-
rary memory; and propagating a valid cycle signal to the
pipeline to cause the pipeline to alter state based on the
instruction of the different thread.

In Example 18, the subject matter of Examples 11-17
includes, rewriting the thread to the temporary memory, 1n
response to detecting that no thread i1s available on the
subsequent clock cycle.

In Example 19, the subject matter of Examples 11-18
includes, wherein the thread scheduling circuitry 1s inte-
grated 1n the barrel processor, the barrel processor included
in a programmable atomic unit, and the programmable
atomic unit 1s included 1n a memory controller.

In Example 20, the subject matter of Example 19
includes, wherein the memory controller 1s a chiplet in a
chiplet system.

Example 21 1s a machine-readable medium including
instructions, which when executed by a barrel processor
having thread scheduling circuitry, cause the barrel proces-
sor to: schedule a current thread to place ito a pipeline for
the barrel processor on a clock cycle, the barrel processor to
schedule threads on each clock cycle; store the current
thread 1n a temporary memory; detect that no thread 1s
available on a clock cycle subsequent to the cycle that the
current thread 1s scheduled; and 1n response to detecting that
no thread 1s available on the subsequent clock cycle, repeat
scheduling the current thread based on the contents of the
temporary memory.

In Example 22, the subject matter of Example 21
includes, instructions to, 1 conjunction with scheduling the
current thread to place into the pipeline, propagating a valid
cycle signal to the pipeline to cause the pipeline to alter state
based on the instruction of the current thread.
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In Example 23, the subject matter of Examples 21-22
includes, wherein the temporary memory comprises a reg-
ister.

In Example 24, the subject matter of Example 23
includes, wherein the register 1s stored i local random-
access memory of the barrel processor.

In Example 25, the subject matter of Examples 21-24
includes, wherein repeat scheduling the current thread com-
prises repeat scheduling an instruction of the current thread.

In Example 26, the subject matter of Examples 21-25
includes, mstructions to propagate an invalid cycle signal to
the pipeline to cause the pipeline to maintain state.

In Example 277, the subject matter of Examples 21-26
includes, instructions to: determine a diflerent thread is
available to schedule; schedule an instruction of the diflerent
thread to place into the pipeline; store the diflerent thread in
the temporary memory; and propagate a valid cycle signal to
the pipeline to cause the pipeline to alter state based on the
instruction of the different thread.

In Example 28, the subject matter of Examples 21-27
includes, mstructions to rewrite the thread to the temporary
memory, 1n response to detecting that no thread 1s available
on the subsequent clock cycle.

In Example 29, the subject matter of Examples 21-28
includes, wherein the thread scheduling circuitry 1s 1inte-
grated 1n the barrel processor, the barrel processor included
in a programmable atomic unit, and the programmable
atomic unit 1s included 1n a memory controller.

In Example 30, the subject matter of Example 29
includes, wherein the memory controller 1s a chiplet 1n a
chiplet system.

Example 31 1s an apparatus for thread replay to preserve
state 1n a barrel processor, the apparatus comprising: means
tor scheduling, at a barrel processor including thread sched-
uling circuitry, a current thread to place into a pipeline for
the barrel processor on a clock cycle, the barrel processor to
schedule threads on each clock cycle; means for storing the
current thread 1n a temporary memory; means for detecting
that no thread 1s available on a clock cycle subsequent to the
cycle that the current thread is scheduled; and means for, 1n
response to detecting that no thread i1s available on the
subsequent clock cycle, repeat scheduling the current thread
based on the contents of the temporary memory.

In Example 32, the subject matter of Example 31
includes, means for, i conjunction with scheduling the
current thread to place into the pipeline, propagating a valid
cycle signal to the pipeline to cause the pipeline to alter state
based on the instruction of the current thread.

In Example 33, the subject matter of Examples 31-32
includes, wherein the temporary memory comprises a reg-
1ster.

In Example 34, the subject matter of Example 33
includes, wherein the register i1s stored i local random-
access memory of the barrel processor.

In Example 35, the subject matter of Examples 31-34
includes, wherein repeat scheduling the current thread com-
prises repeat scheduling an instruction of the current thread.

In Example 36, the subject matter of Examples 31-335
includes, means for propagating an invalid cycle signal to
the plpehne to cause the pipeline to maintain state.

In Example 37/, the subject matter of Examples 31-36
includes, means for determining a different thread 1s avail-
able to schedule; means for scheduling an 1nstruction of the
different thread to place into the pipeline; means for storing
the different thread in the temporary memory; and means for
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propagating a valid cycle signal to the pipeline to cause the
pipeline to alter state based on the instruction of the different

thread.

In Example 38, the subject matter of Examples 31-37
includes, means for rewriting the thread to the temporary
memory, 1n response to detecting that no thread 1s available
on the subsequent clock cycle.

In Example 39, the subject matter of Examples 31-38
includes, wherein the thread scheduling circuitry 1s 1inte-
grated 1n the barrel processor, the barrel processor included
in a programmable atomic unit, and the programmable
atomic unit 1s included in a memory controller.

In Example 40, the subject matter of Example 39
includes, wherein the memory controller 1s a chiplet in a
chiplet system.

Example 41 1s an apparatus, comprising: a memory con-
troller chiplet 1n a chiplet system, the memory controller
chuplet comprising: a programmable atomic unit, the pro-
grammable atomic umt comprising: a barrel processor, the
barrel processor comprising: a temporary memory; and
thread scheduling circuitry; wherein the barrel processor 1s
configured to perform operations through use of the thread
scheduling circuitry, the operations including: scheduling a
current thread to place into a pipeline for a barrel processor
on a clock cycle, the barrel processor to schedule threads on
cach clock cycle; storing the current thread 1in the temporary
memory; detecting that no thread 1s available on a clock
cycle subsequent to the cycle that the current thread is
scheduled; and 1n response to detecting that no thread 1s
available on the subsequent clock cycle, repeat scheduling
the current thread based on the contents of the temporary
memory.

In Example 42, the subject matter of Example 41
includes, wherein the barrel processor 1s configured to
perform operations through use of the thread scheduling
circuitry, including 1in conjunction with scheduling the cur-
rent thread to place into the pipeline, propagating a valid
cycle signal to the pipeline to cause the pipeline to alter state
based on the instruction of the current thread.

In Example 43, the subject matter of Examples 41-42
includes, wherein the temporary memory comprises a reg-
1ster.

In Example 44, the subject matter of Example 43
includes, wherein the register i1s stored in local random-
access memory of the barrel processor.

In Example 45, the subject matter of Examples 41-44
includes, wherein repeat scheduling the current thread com-
prises repeat scheduling an instruction of the current thread.

In Example 46, the subject matter of Examples 41-45
includes, wherein the barrel processor 1s configured to
perform operations through use of the thread scheduling
circuitry, including propagating an imnvalid cycle signal to the
pipeline to cause the pipeline to maintain state.

In Example 47, the subject matter of Examples 41-46
includes, wherein the barrel processor 1s configured to
perform operations through use of the thread scheduling

L] [

circuitry, including: determining a diflerent thread 1s avail-
able to schedule; scheduling an instruction of the different
thread to place 1nto the pipeline; storing the different thread
in the temporary memory; and propagating a valid cycle
signal to the pipeline to cause the pipeline to alter state based
on the mstruction of the different thread.

In Example 48, the subject matter of Examples 41-47
includes, wherein the barrel processor 1s configured to
perform operations through use of the thread scheduling

circuitry, including rewriting the thread to the temporary
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memory, 1n response to detecting that no thread 1s available
on the subsequent clock cycle.

Example 49 1s at least one machine-readable medium
including instructions that, when executed by processing
circuitry, cause the processing circuitry to perform opera-
tions to implement of any of Examples 1-48.

Example 50 1s an apparatus comprising means to imple-
ment of any of Examples 1-48.

Example 51 1s a system to implement of any of Examples
1-48.

Example 52 1s a method to implement of any of Examples
1-48.

The above detailed description includes references to the
accompanying drawings, which form a part of the detailed
description. The drawings show, by way of 1illustration,
specific embodiments in which the invention can be prac-
ticed. These embodiments are also referred to herein as
“examples”. Such examples can include elements 1n addi-
tion to those shown or described. However, the present
inventors also contemplate examples 1 which only those
clements shown or described are provided. Moreover, the
present 1nventors also contemplate examples using any
combination or permutation of those elements shown or
described (or one or more aspects thereof), either with
respect to a particular example (or one or more aspects
thereot), or with respect to other examples (or one or more
aspects thereol) shown or described herein.

In this document, the terms “a” or “an” are used, as 1s
common 1n patent documents, to include one or more than
one, independent of any other instances or usages of “at least
one” or “one or more.” In this document, the term “or” 1s
used to refer to a nonexclusive or, such that “A or B” can
include “A but not B,” “B but not A,” and “A and B,” unless
otherwise indicated. In the appended claims, the terms
“including” and “in which” are used as the plain-English
equivalents of the respective terms “comprising” and
“wherein”. Also, 1n the following claims, the terms “includ-
ing” and “comprising” are open-ended, that i1s, a system,
device, article, or process that includes elements 1n addition
to those listed after such a term 1n a claim are still deemed
to fall within the scope of that claam. Moreover, in the
following claims, the terms *“first,” “second,” and *“third,”
etc. are used merely as labels, and are not intended to impose
numerical requirements on their objects.

The above description 1s intended to be illustrative, and
not restrictive. For example, the above-described examples
(or one or more aspects thereof) can be used in combination
with each other. Other embodiments can be used, such as by
one of ordinary skill in the art upon reviewing the above
description. It 1s submitted with the understanding that 1t will
not be used to interpret or limit the scope or meaning of the
claims. Also, 1 the above Detailed Description, various
features can be grouped together to streamline the disclo-
sure. This should not be interpreted as intending that an
unclaimed disclosed feature 1s essential to any claim. Rather,
inventive subject matter can lie 1n less than all features of a
particular disclosed embodiment. Thus, the following claims
are hereby incorporated into the Detailed Description, with
cach claim standing on 1ts own as a separate embodiment,
and 1t 1s contemplated that such embodiments can be com-
bined with each other 1n various combinations or permuta-
tions. The scope of the invention should be determined with
reference to the appended claims, along with the full scope
of equivalents to which such claims are entitled.

What 1s claimed 1s:

1. An apparatus, comprising:

a barrel processor, comprising:
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a temporary memory; and
a thread scheduling circuitry;
wherein the barrel processor 1s configured to perform
operations through use of the thread scheduling
circuitry, the operations mcluding those to:
schedule a current thread to place 1nto a pipeline for
the barrel processor on a clock cycle, the barrel
processor to schedule threads on each clock cycle;
store the current thread in the temporary memory
while the current thread i1s being executed 1n the
pipeline;
detect that no thread 1s available to schedule from a
thread scheduling queue on a clock cycle subse-
quent to the clock cycle that the current thread is

scheduled; and

in response to detecting that no thread 1s available on
the subsequent clock cycle, repeat scheduling the
current thread based on contents of the temporary
memory instead of the thread scheduling queue.

2. The apparatus of claim 1, wherein the barrel processor
1s 1o, 1n conjunction with scheduling the current thread to
place into the pipeline, propagating a valid cycle signal to
the pipeline to cause the pipeline to alter state based on the
instruction of the current thread.

3. The apparatus of claim 1, wherein the temporary
memory comprises a register.

4. The apparatus of claim 3, wherein the register 1s stored
in local random-access memory of the barrel processor.

5. The apparatus of claim 1, wherein repeat scheduling the
current thread comprises repeat scheduling an 1nstruction of
the current thread.

6. The apparatus of claim 1, wherein the barrel processor
1s to propagate an invalid cycle signal to the pipeline to
cause the pipeline to maintain state.

7. The apparatus of claim 1, wherein the barrel processor
1s to:

determine a different thread 1s available to schedule:

schedule an 1nstruction of the different thread to place mnto

the pipeline;

store the different thread in the temporary memory; and

propagate a valid cycle signal to the pipeline to cause the

pipeline to alter state based on the instruction of the
different thread.

8. The apparatus of claim 1, wherein the thread scheduling
circuitry 1s to rewrite the thread to the temporary memory,
in response to detecting that no thread i1s available on the
subsequent clock cycle.

9. The apparatus of claim 1, wherein the thread scheduling,
circuitry 1s integrated in the barrel processor, the barrel
processor included 1n a programmable atomic unit, and the
programmable atomic unit 1s included 1n a memory control-
ler.

10. The apparatus of claim 9, wherein the memory con-
troller 1s a chiplet in a chiplet system.

11. A method, comprising:

scheduling, at a barrel processing including thread sched-

uling circuitry, a current thread to place into a pipeline
for a barrel processor on a clock cycle, the barrel
processor to schedule threads on each clock cycle;
storing the current thread 1n a temporary memory while
the current thread 1s being executed 1n the pipeline;
detecting that no thread is available to schedule from a
thread scheduling queue on a clock cycle subsequent to
the clock cycle that the current thread 1s scheduled; and
in response to detecting that no thread 1s available on the
subsequent clock cycle, repeat scheduling the current
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thread based on contents of the temporary memory
instead of the thread scheduling queue.

12. The method of claim 11, comprising, 1n conjunction
with scheduling the current thread to place into the pipeline,
propagating a valid cycle signal to the pipeline to cause the
pipeline to alter state based on the mstruction of the current
thread.

13. The method of claim 11, wherein the temporary
memory comprises a register.

14. The method of claim 13, wherein the register 1s stored
in local random-access memory of the barrel processor.

15. The method of claim 11, wherein repeat scheduling
the current thread comprises repeat scheduling an instruction
of the current thread.

16. The method of claim 11, comprising propagating an
invalid cycle signal to the pipeline to cause the pipeline to
maintain state.

17. The method of claim 11, comprising:

determining a different thread 1s available to schedule;

scheduling an instruction of the different thread to place

into the pipeline;

storing the different thread in the temporary memory; and

propagating a valid cycle signal to the pipeline to cause

the pipeline to alter state based on the instruction of the
different thread.

18. The method of claim 11, comprising rewriting the
thread to the temporary memory, in response to detecting
that no thread 1s available on the subsequent clock cycle.

19. The method of claim 11, wherein the thread schedul-
ing circuitry 1s integrated in the barrel processor, the barrel
processor included 1n a programmable atomic umt, and the
programmable atomic unit 1s included 1n a memory control-
ler.

20. The method of claim 19, wherein the memory con-
troller 1s a chiplet 1n a chiplet system.

21. An apparatus, comprising:

a memory controller chiplet mn a chiplet system, the

memory controller chiplet comprising:
a programmable atomic unit, the programmable atomic
unit comprising:
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a barrel processor, the barrel processor comprising:

a temporary memory; and

thread scheduling circuitry;

wherein the barrel processor 1s configured to per-
form operations through use of the thread
scheduling circuitry, the operations including;:
scheduling a current thread to place mnto a
pipeline for a barrel processor on a clock cycle,
the barrel processor to schedule threads on each
clock cycle;
storing the current thread in the temporary
memory while the current thread 1s being
executed 1n the pipeline;
detecting that no thread 1s available to schedule
from a thread scheduling queue on a clock cycle
subsequent to the clock cycle that the current
thread 1s scheduled; and
in response to detecting that no thread 1s avail-
able on the subsequent clock cycle, repeat
scheduling the current thread based on contents
of the temporary memory instead of the thread
scheduling queue.

22. The apparatus of claim 21, wherein the barrel proces-
sor 15 configured to perform operations through use of the
thread scheduling circuitry, including in conjunction with
scheduling the current thread to place into the pipeline,
propagating a valid cycle signal to the pipeline to cause the
pipeline to alter state based on the mstruction of the current
thread.

23. The apparatus of claim 21, wherein the temporary
memory comprises a register.

24. The apparatus of claim 23, wherein the register 1s

stored 1n local random-access memory of the barrel proces-
SOF.
25. The apparatus of claim 21, wherein repeat scheduling
the current thread comprises repeat scheduling an 1nstruction
of the current thread.
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